A study of second-order q-difference equations with boundary conditions
نویسندگان
چکیده
This paper studies a boundary value problem of nonlinear second-order q-difference equations with non-separated boundary conditions. As a first step, the given boundary value problem is converted to an equivalent integral operator equation by using the q-difference calculus. Then the existence and uniqueness of solutions of the problem is proved via the resulting integral operator equation by means of Leray-Schauder nonlinear alternative and some standard fixed point theorems. Our approach is simpler than the one involving the typical series solution form of qdifference equations. The results corresponding to a second-order q-difference equation with anti-periodic boundary conditions appear as a special case. Furthermore, our results reduce to the corresponding results for classical secondorder boundary value problems with non-separated boundary conditions in the limit q ® 1, which provides a useful check. 2010 Mathematics Subject Classification. 39A05, 39A13.
منابع مشابه
Eigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions
In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....
متن کاملFinite difference method for sixth-order derivatives of differential equations in buckling of nanoplates due to coupled surface energy and non-local elasticity theories
In this article, finite difference method (FDM) is used to solve sixth-order derivatives of differential equations in buckling analysis of nanoplates due to coupled surface energy and non-local elasticity theories. The uniform temperature change is used to study thermal effect. The small scale and surface energy effects are added into the governing equations using Eringen’s non-local elasticity...
متن کاملFinite difference method for sixth-order derivatives of differential equations in buckling of nanoplates due to coupled surface energy and non-local elasticity theories
In this article, finite difference method (FDM) is used to solve sixth-order derivatives of differential equations in buckling analysis of nanoplates due to coupled surface energy and non-local elasticity theories. The uniform temperature change is used to study thermal effect. The small scale and surface energy effects are added into the governing equations using Eringen’s non-local elasticity...
متن کاملThe existence results for a coupled system of nonlinear fractional differential equations with multi-point boundary conditions
In this paper, we study a coupled system of nonlinear fractional differential equations with multi-point boundary condi- tions. The differential operator is taken in the Riemann-Liouville sense. Applying the Schauder fixed-point theorem and the contrac- tion mapping principle, two existence results are obtained for the following system D^{alpha}_{0+}x(t)=fleft(t,y(t),D^{p}_{0+}y(t)right), t in (0,...
متن کاملDiscrete boundary treatment for the shifted wave equation in second order form and related problems
We present strongly stable semi-discrete finite difference approximations to the quarter space problem (x > 0, t > 0) for the first order in time, second order in space wave equation with a shift term. We consider space-like (pure outflow) and time-like boundaries, with either second or fourth order accuracy. These discrete boundary conditions suggest a general prescription for boundary conditi...
متن کامل